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THEORETICAL NOTE

A Metatheory of Classical and Modern Connectionism

Olivia Guest" ? and Andrea E. Martin'* *
! Donders Institute for Brain, Cognition, and Behaviour, Radboud University
2 Department of Cognitive Science and Artificial Intelligence, Radboud University
3 Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands

Contemporary artificial intelligence models owe much of their success and discontents to connectionism, a
framework in cognitive science that has been (and continues to be) highly influential. Herein, we analyze
artificial neural networks: (a) when used as scientific instruments of study and (b) when functioning as
emergent arbiters of the zeitgeist in the cognitive, computational, and neural sciences. Building on our
previous work with respect to analogizing between artificial neural networks and cognition, brains, or
behavior (Guest & Martin, 2023), we use metatheoretical analysis techniques (Guest, 2024), including
formal logic, to characterize two distinct tendencies within connectionism that we dub classical and modern,
with divergent properties, for example, goals, mechanisms, and scientific questions. We also demonstrate
how we, as a field, often fail to follow important lines of argument to their end—this results in a paradoxical
praxis. By engaging more deeply with (meta)theory surrounding artificial neural networks, our field can
obviate the cycle of artificial intelligence winters and summers, which need not be inevitable.

Keywords: artificial neural network, cognitive neuroscience, computational modelling, connectionism,

metatheortical calculus

Connectionism was conceived almost three centuries ago (in the 1740s),
but had a long gestation. In its embryonic form, it was merely biologized
introspection: David Hartley’s view that thinking is grounded in
associative mechanisms in the brain. (Boden, 2006, p. 885)

According to Boden (2006), connectionism has been around in some
form or another for almost three centuries. Even a more conservative
estimate still places connectionism’s beginnings in the 1940s,
making it much older than the current technology industry-driven
hype cycle in artificial intelligence (AI) research (Hamilton, 1998;
also see Dhaliwal et al., 2024; Wilson, 2016). Connectionism has
gone through boom and bust cycles, so-called summers and winters;
thus statements such as “we attend today an explosive infatuation for
this once old style but now new fashioned view of cognition”
(Bersini, 1989, p. 472) wondrously are as applicable now as when
they were written 36 years ago. In this article, we aim to critique and
juxtapose modern connectionist stances with those around prior to

2010 when it can be argued the classical, predeep learning (cf.
Dechter, 1986), and prewidespread graphics processing unit use, era
ended (Schmidhuber, 2015; Sevilla et al., 2022; Thompson, 2021).

Importantly, contemporary Al models owe much of their success
and discontents to connectionism. This historical and present
friction between connectionism and the rest of the fields it touches
on, or draws inspiration from, is worthy of examination. Thus, we
present a nuanced critical perspective on artificial neural networks
(ANNs) when used as scientific instruments of study (i.e., as
computational models of the brain and behavior, e.g., as used in
cognitive computational neuroscience; Guest & Martin, 2023).
This use is in contrast to when ANNs are used as statistical and
engineering methodologies (i.e., in nonscientific engineering-
oriented Al uses, e.g., face recognition to unlock a smartphone).
Notwithstanding, there are important overlaps between the tech-
nology sector, which is driven by profits and engineering, and
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2 GUEST AND MARTIN

science, such as that funding flows from private industry to science
and that many models’ codebases and training sets are proprie-
tary. This results in important undesirable contradictions and in
conflicts of interest (e.g., Forbes & Guest, 2025; Gerdes, 2022;
Guest et al., 2025; Liesenfeld & Dingemanse, 2024; Liesenfeld
et al., 2023).

The analysis presented in this article is centered on the idea that,
both critics and advocates, we as a field must follow important lines
of argumentation to their logical conclusions. We examine the
effects of the converse: when we take defensive rhetorical positions
too far in discussing the scientific and engineering contributions
of and purported capacities of ANNs. To do this, we propose a
bisection of the connectionist tendency into roughly pre-2010, what
we dub classical connectionism and abbreviate to €, and post-
2010, which we call modern connectionism and 9t (see Table 1).
Such a distinction accommodates a variety of related scientific
events occurring as a function of so-called deep ANNs becoming

computationally feasible and accessible to many scientists around
the world, for example, the rise of using ANNs as models of
the brain and cognition (Kriegeskorte, 2015; Schmidhuber,
2015; Sevilla et al., 2022; Thompson, 2021), as a result of
successes (such as Ciresan et al., 2010; Hinton, 2012; Krizhevsky
et al., 2012).

Building on our previous work (Guest & Martin, 2021, 2023), we
will unpack where and how the (meta)theoretical positions with
respect to connectionism appear to lack rigor. To this end, we
construct a metatheoretical calculus (Guest, 2024; Guest & Martin,
2023) for connectionist tendencies: a description of the adjudication
over theories, models, and scientific contributions that is carried out
within and between this framework.

But before we can do any of that, what is connectionism?
According to Rumelhart et al. (1986), it is “the notion that intel-
ligence emerges from the interactions of large numbers of simple
processing units” (p. ix). “This framework has been variously called

Table 1

A Collection of Perhaps Contradictory (Meta)Theoretical Claims or Commitments Between Older, Classical Versus Newer, Modern
Connectionist Tendencies

Property G-connectionism: classical, pre-2010 M -connectionism: modern, post-2010

Goal The goal is understanding the repercussions of our theories, that is “The goal of the science is to be able to predict what systems
“models [are] tools for exploring the implications of ideas” are going to do. These artificial neural networks get us closer
(McClelland, 2009, p. 12). Models are used to understand the to that goal in neuroscience” (Josh McDermott in
theories within connectionism, which themselves are about Ananthaswamy, 2021). And so “when we say we understood
understanding brain, cognition, and behavior. Additionally, a “good a phenomenon, first and foremost it means that we can
fit never means that a model can be declared to provide the true predict all of the explainable variance in the data for any
explanation for the observed data” (McClelland, 2009, p. 12). input in the domain over which the model is claimed to

hold” (Kubilius, 2018, p. 110).

Question Can connectionist principles give rise to similar behavior and brain Can ANNSs predict, here used to mean correlate with,
data or cognitive capacities as seen in humans (e.g., Elman et al., behavioral or brain data? As such, they are used like
1996; Rumelhart et al., 1986)? No specific prediction requirements inferential statistics, but framed like theoretical models (viz.
are imposed on the models and anatomical mappings, if present, are Guest & Martin, 2023). “Not only did we get good
baked-in. The model is forwarded as a way to explore theory predictions... but also there’s a kind of anatomical
(McClelland, 2009). consistency” (Daniel Yamins in Ananthaswamy, 2021).

Theory Theory is implemented by the model; the model is not a stand-in for Theory is the model, for example, “theory [is] instantiated in
theory. For example, “we consider a simple computational task-performing computational models” (Kriegeskorte &
implementation of the theory, in which visual representations of Douglas, 2018, p. 4). Additionally, theorizing is (often)
objects and perceptual representations of verbal statements about inspired by engineered systems, not nature directly, for
these objects interact with one another by means of an example, “current computational neuroscience practice
intermediating semantic system” (Rogers et al., 2004, p. 206). [looks to] AI [which] has historically provided a fund of

ideas for biological theories” (Gershman, 2024, p. 4).

Mechanism  Mechanisms are proposed, which the model embodies, and The model is assumed to be equivalent in some way to a
experiments are done to show proof of concept, that is can cognitive or neural system, and experiments are done to
connectionist principles give rise to phenomena and/or capacities of support this assumption. “The core idea is to ‘treat [an ANN]
interest? “The [ANN] allows us not just to probe the response to a as a participant in a psychology experiment,” in order to
given test stimulus[, but to also] ask questions about the nature of tease out the system’s mechanisms of decision making,
the existing representations the model has learned” (Althaus et al., reasoning, cognitive biases, and other important
2020, p. 5). psychological traits” (Shiffrin & Mitchell, 2023, p. 1).

Brain Brain regions, if related to models, are presented as being modeled— “Computational models can help infer the function of brain
not as uncovered correlationally. Theory, or some knowledge of the regions by linking model and brain activity. Multilayer
to-be-modeled, to-be-understood, system, comes first and these ideas models [...] are particularly promising in this regard because
are placed into the ANN model purposefully (Guest et al., 2020; their layers can be systematically mapped to brain regions”
Rogers et al., 2004). (Sexton & Love, 2022, p. 3).

Training There is often explicit awareness of the possibility for a behaviorist or ~ Claims about statistics in the inputs, the proverbial ghost in the
associationist stance and the load placed on the training regime and machine (viz. Ryle, 1949), are downplayed. The model’s
set, which in the case of ANNs is statistics in the input, for example, depth or architecture generally is taken as the important
“[dJon’t pre-wire structure into your mechanism if it can get it for factor. The training set is not implicated in argumentation,
free from the environment” (Plunkett, 2001, p. 193). except to say it comprises realistic stimuli, for example,

photographs (e.g., Jozwik et al., 2017; Storrs et al., 2021).

Note. We do not assume that this dichotomy characterizes all connectionist work, but we propose it functions as a simplifying lens—to display points on

a continuum of beliefs—through which to understand the differences within this broader research program. ANN = artificial neural network; Al = artificial

intelligence.
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A METATHEORY OF CLASSICAL AND MODERN CONNECTIONISM 3

parallel distributed processing, neural network modeling, or con-
nectionism[. A] term introduced by Donald Hebb in the 1940’s”
(Elman et al., 1996, p. xii). Most broadly, connectionism is the
drawing of parallels between ANN models and the brain and
cognition, and specifically using them to model neurocognitive
systems or phenomena. Worthy of underlining here is “that con-
nectionist networks typically do not bear a transparent relation to the
neurological structures that realize them, [and so] the description of
connectionist networks as ‘neural nets’ is somewhat misleading.”
(Egan, 1995, p. 184).

ANNs are mathematical objects implemented on digital com-
puters that involve banks of units, artificial neurons, grouped into
layers that propagate activations to other banks of units (or recur-
rently back to themselves) through matrix multiplication and some
type of nonlinear squashing function, for example, hyperbolic
tangent. Learning is achieved, for example, using backpropagation,
by changing the numerical value of the connection weights, artificial
synapses, between and within layers as a function of the difference
between the network’s output behavior and some target state, for

example, in supervised learning: the output units. For a schematic of
a hardware ANN, see Figure 1: the Mark I perceptron (Hay et al.,
1960; Rosenblatt, 1958). Even in a nascent stage, such models
resemble modern connectionist framings with respect to, for
example, drawing parallels between input units and retinal cells (as
seen on the leftmost part of Figure 1).

We will next analyze the relationships within and between
connectionist tendencies, using Guest (2024) as a way to
tease out (meta)theoretical properties. First, the Metaphysical
Commitment section, we explore the clarity of how the two
branches of connectionism that we propose herein, € and I (see
Table 1), differentiate themselves as unique stances, as unique
sets of assumptions. So within the broader framework of con-
nectionism we differentiate two tendencies, both from the rest of
the relevant fields’ offerings (the Identity: What Characterizes
Connectionism? section) and from each other (the Separation:
What Differentiates Types of Connectionism? section). This
exercise provides the building blocks for the formal accounts
given in later sections.

Figure 1
Organization of the Mark 1 Perceptron
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Note. “Organization of the Mark I Perceptron” (Hay et al., 1960, Figure 1, p. 13): a hardware ANN built by

Frank Rosenblatt’s Cognitive Systems Section at Cornell Aeronautical Laboratory Incorporated (also see
Rosenblatt, 1958, 1959, 1960). From their inception, ANNs have had a proposed parallel structure to biological
neural systems and have been forwarded as a model of human cognition. In this figure, it is demonstrated that
hardware architectures along these principles were seen as important—this requirement is now relaxed with
GPUs and other modern hardware, which undergird modern ANN models, not having proposed brain-like
components. This blurs the lines between mechanistic and functional modeling, and phraseology like
“microstructure of cognition” (Rumelhart et al., 1986) versus function approximation (Egan, 2017; Guest et al.,
2025; van Rooij & Baggio, 2021). Connectionism resides at the inflections of these often contrasting ideological
positions (Pasquinelli, 2017). GPU = graphics processing unit; ANNs = artificial neural networks. Adapted from
Mark I Perceptron Operators’ Manual (Report No. VG-1196-G-5) (p. 13), by J. C. Hay, B. E. Lynch, and D. R.
Smith, 1960, Cornell Aeronautical Lab (https://apps.dtic.mil/sti/tr/pdf/AD0236965.pdf). In the public domain.
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4 GUEST AND MARTIN

Second, the Discursive Survival section, we investigate how both
C- and IM-connectionism are discussed by the broader fields they
are embedded in (neuro-, psychological, and cognitive sciences).
For example, we know that connectionism, and specifically as a
modeling strategy and as a methodology, has been subject to tar-
geted attacks, for example, claims about inability to compute certain
functions, like exclusive or (XOR), for dealing with nonlinearly
separable data. We analyze this along two broad lines: the ability to
craft a coherent reaction to attacks (the Argumentation section), and
the ability to tell a coherent story about the scientific theory (the
Narration section). We formally describe the two types of con-
nectionist reasoning using modal and doxastic logic in Proposition 1
for €-connectionism and Proposition 2 for I)t-connectionism.

Finally, the Empirical Interface section, we elaborate on how, or
even if, €- and IM-connectionist models successfully mediate
between theory and data. We provide an experimental typology in
Figure 2 to document and formalize how practitioners within

Figure 2
Classical Connectionism Versus Modern Connectionism

M-connectionism

: >

€-connectionism

: >

¢ie(I) ¢,‘€<D

$j €@

correlate S with M;; post-hoc
map question in S to M

se0 B u(> wceFH wm>

Note. A cartoon depiction of the simplified differences between €- and IN-
connectionism with respect to postulating mechanisms and building models
(collectively M) and relating them to the cognitive and neural systems
(collectively S). On the left, in blue and in the top panel, we see an eye, which
represents the scientist working under G-connectionism, looking at human
behavior and cognition (phenomena ¢;) and the brain (phenomena ¢) all of
which comprise S, the system under study. All the observed phenomena here
are very explicitly in @, the set of phenomena that neuro-, cognitive, and
psychological sciences care about. On the left, in blue and in the bottom
panel, we see what €-connectionism does to model ¢; and ¢; above: create a
model that embodies what they think connectionism can do, that is build M as
a proof of concept, to capture the phenomena. On the right, in pink, we see
the same top panel as before: 9i-connectionists document, witness, research
¢;, and ¢; of S. However, under IM-connectionism there is little to no
engagement with the mechanistic and/or functional theoretical positions
about S when building M, shown in the bottom panel on the right. In fact, M
is proposed as the theory itself—not built under a theory, and trained to
perform tasks that S is also subject to. What happens is data from M is
correlated with data from S, such that statistical relationships, for example,
goodness-of-fit, are what make M a useful scientific model. Thus, scientific
questions (Table 1) in S are matched post hoc to aspects of M. Indeed,
behaviors of M are often seen as worthy of scientific investigation as if ¢,
from the perspective of connectionism, potentially subverting the field’s
goals. (Icons licensed from Victoruler—Flaticon.) See the online article for
the color version of this figure.

$je®@

postulate mechanism and/or
function for S; build M

connectionist tendencies reason about their experimental manip-
ulations and their modeling praxis.

Metaphysical Commitment

Almost everyone who is discontent with contemporary cognitive
psychology and current “information processing” models of the mind
has rushed to embrace “the Connectionist alternative.” (Fodor &
Pylyshyn, 1988, p. 4)

We propose that connectionism can usefully be split into two
tendencies: C- versus It-connectionism. The proposed differenti-
ating factors are those found in Table 1, which characterize the two
positions’ scientific goals and questions, their beliefs about theory,
and what constitutes a theory, their mechanistic assumptions or
proposals, their interface with the brain, and their framing of what
the models’ training sets provide to reasoning about the models’
successes and failures. Because indeed we find these dimensions
provide evidence of difference—although we by no means preclude
further differences within what we dub €- and Jt-connectionism—
we present them side-by-side in Table 1 to further understanding and
heighten awareness of these changes in connectionist (meta)theorizing.
Where we use words like theory, mechanism, and model we do so as a
function of authors’ use, and so hold up a mirror to what they may
mean, and as labels or placeholders for a wide variety of possible use
cases since scientists may have idiosyncratic as well as field- or
framework-level meanings they deploy in different contexts.

Importantly, the authors strive to avoid imposing on the literature
and reader their own definitions of terms, like theory, because they
hang in relation to each other as variables where often only the
relationships between them or their properties are articulated, such
as in the examples we provide in Table 1 and in the rest of the article.
Notwithstanding, if a description of what each of these terms could
mean is useful, the reader can lean on the following: Theory is “a
scientific proposition—described by a collection of natural-lan-
guage sentences, mathematics, logic, and figures—that introduces
causal relations with the aim of describing, explaining, and/or
predicting a set of phenomena” (Guest & Martin, 2021, p. 794; also
Guest, 2024). Mechanism

in neuroscience [can be] synonymous to [neurobiological] substrate
(e.g., Darden, 2006; Lisman et al., 2017), but under computationalism a
substrate will not, cannot, cut it as a mechanistic analysis [therefore
many practitioners] completely rule out using substrate and mechanism
interchangeably. (Guest & Martin, 2025, Box 1; Guest et al., 2025)

Connectionism has a well-documented history of straddling
the boundaries between neurobiology, on the one hand, and
Al and psychology, on the other hand, and so substrates (e.g.,
individual neurons or brain areas) and, for example, constitutive
mechanisms (Guest & Martin, 2023; Krickel, 2024; Ross &
Bassett, 2024) are seen to converge. However, these two types of
mechanistic underpinning can also be entirely separate, for example,
representations that emerge in the ANN model can be described as
not related to any substrate detail, especially in € (Egan, 1995).
Finally, model herein is the term we use for the role of the ANN,
however specified and implemented (Guest & Martin, 2023),
characterized by the mediation it provides between theory, formal
or verbal, and the relevant observations, data, and phenomena
(Morgan & Morrison, 1999)
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A METATHEORY OF CLASSICAL AND MODERN CONNECTIONISM 5

On a related note, we do not mean that all work that involves
ANN:Ss can be easily classified into either one type of connectionism
over another. We also do not mean this distinction is purely temporal
and thus explicitly include examples of €-connectionism that are
post-2010 to highlight this. We merely propose that seeing these
high-level strands of difference is informative.

To presage the coming analysis, the difference between the
two types of connectionism can be boiled down to, on the one
hand, € has the goal to show that ANNs learn or behave like the
neurocognitive system because they are held to share important
structural or mechanistic properties—a proof of concept, a frame-
work for housing theories. On the other hand, 9 has the goal to
show how ANNS learn or behave like the neurocognitive system—a
totalizing view of method as theory and of map as territory—and not
as a function of verbal theory, formal specification, and other
modeler choices.

Identity: What Characterizes Connectionism?

The model ... represents an essentially empiricist approach to
perception [with] an optical input, and a printer or set of signal lights
as an output. [A]fter a period of training, the system will exhibit
capabilities for discrimination, association, and stimulus generalization.
[TThis is the first time that a set of theoretical principles will have been
clearly proven to generate a perceptual capability, in a system of
completely known structure. (Rosenblatt, 1959, pp. 296-297)

C-connectionism bases its identity in part on showing that connec-
tionist models can account for phenomena that do, or did, not appear
to be easily composable into computations carried out by smaller
units, such as the so-called neurons and their connection weights
in ANNSs (see Table 1, especially rows Goal, Question, and Training).
€ “has demonstrated that a great deal of information is latent in the
environment and can be extracted using simple but powerful learning
rules” (Elman et al., 1996, pp. xii—xiii). In many ways, this is a
theoretical point about the nature of what the modeled organism is
doing, that is humans are able to learn statistical regularities from the
environment, which €-connectionism rightly takes to mean that the
resulting learning is by virtue of the training set and of the learning
algorithm (Guest et al., 2020). That is, they set their scientific sights on
understanding if their connectionism can, given the ANNs they build
and the training sets they train their model on, give rise to what they
see people do. €-connectionists, like Elman et al. (1996) and many
others, explicitly reacted to claims of innateness (however construed)
of capacities, asserting and showing (according to their standards of
evidence) that appealing to innate properties of neurocognitive sys-
tems is not required.’

On the other hand, what characterizes 9t-connectionism is that its
identity is based on (a) deep ANN models, which are framed as
human-like® because they score highly on typically unrelated (or at
least different) tasks to those being neurocognitively researched and
because they accept as input the same types of stimulus files that can
be used in experiments with people, that is realistic training and
testing sets (see rows mechanism and training, in Table 1). Contrast
this with € perspectives on larger models: “increasing complexity
creates a tension with the primary goals of modeling—simplification
and understanding” (M. S. C. Thomas & McClelland, 2008, p. 50).
And this tension reaches a climax when one considers that if the
model is treated as a black box, often is produced by the technology

industry for their purposes and is likely closed source and the
training regimen and stimuli are outside the scientists’ control (Jain
et al., 2024; Liesenfeld et al., 2023; cf. Sullivan, 2022): what is left
for the scientist to contribute other than uncover correlations
between a largely preset model and a phenomenon?® This relegates
in many ways the ANN to no more than a statistical model which
provides scientists with a value of model-to-person or model-to-
brain matching (e.g., “brain-score,” Pasquinelli, 2017; Schrimpf
et al., 2020).

On this point, 9N’s identity is also based on (b) the ANNs dis-
playing (statistical) prediction capabilities with respect to correlation
to observations from brain and behavior (see rows goal and question,
in Table 1). Additionally, (c) also unique in 9i-connectionism is the
stance that the model embodies the theory—not that the model is
imbued or enriched by the scientist’s theoretical positions, nor that
the model mediates between theory and data, nor that the model helps
test a theory, nor that the model as in € allows us to debug our
thinking, but that the model constitutes theory as such (see row
theory, in Table 1).

Finally, (d) 9t-connectionism implicates brain areas, and neu-
roscience generally, more often than ¢-connectionism and with an
agenda entangled with so-called neuro-/bio-plausibility (see row
brain, in Table 1). Let us contrast again with a typical € stance on
this: “Neural plausibility should not be the primary focus for a
consideration of connectionism” (M. S. C. Thomas & McClelland,
2008, pp. 28-29, also Smolensky, 1988, but cf. Elman et al., 1996;
McLaughlin & Warfield, 1994; Stinson, 2020). Additionally,
appealing to innateness and nativism—that is that “aspect[s] of
cognition [...] must be innate, or, (at the very least) subject to
powerful biological constraints” (Elman et al., 1996, p. 240)—is not
ruled out by I-connectionism. In fact, such constraints are ap-
pealed to, or seen as imperative to include in models, using phrases
such as “inductive bias” (a concept which has been around in
machine learning for a while, including with respect to ANNs;
Gordon & Desjardins, 1995; Pavlick, 2023). Inductive biases like
innate capacities are “not learned” (Goldberg, 2008; see footnote 1).
And as such stand in stark contrast to requests from € practitioners
to not “pre-wire structure into [the] mechanism if it can [be obtained]
for free from the environment” (Plunkett, 2001, p. 193), that is the
training set.

In both types of connectionism, although especially in M,
there emerge similar entanglements between observations and the
so-called “bridging” of levels, which proposes that, for example,

' As Elman et al. (1996) and others acknowledge, innateness and nativism
are not clear-cut concepts and the polarized, or even wrong framings of the
nature/nurture discussions in science and society at large are likely more
damaging than useful. Notwithstanding, it is not the case that “innateness”
as discussed or used by linguists is the same (concept) as “innateness” in
genetics or biology.

2 This characterization of human-likeness is the case only in complex or
dubious ways (e.g., Leivada, Giinther, & Dentella, 2024). Also, the concept
of deeper models being more human-like is consistent with the classical
dualist perspective: “The difference between machines and natural objects is
simply one of degree for Descartes[. M]achines are works of nature differing
from other natural objects only by degree of complexity” (Hattab, 2009,
p- 85).

3 As in other manifestations of the current AI hype, the deskilling force of
ANN:S raises its head in the fields that use them for their scientific endeavors.
Threatening, albeit with the seeming consent of their creators, to replace
and/or deskill the very scientists who use these models (Forsythe, 1993;
Pfaffenberger, 1988; Rich et al., 2021; van Roojj et al., 2024).
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6 GUEST AND MARTIN

findings about neurons can help constrain theories about psy-
chology or vice versa (e.g., Griffiths et al., 2012; Love, 2015; Mok
& Love, 2023; cf. Elgin, 2009; Nagel, 1979). Such discussions in
the literature indicate a misunderstanding of Marr’s (1982) levels,
that is a confusion between his levels of analysis versus broader
levels of description of the world (cf. Blokpoel, 2018; Chirimuuta,
2018; Rich et al., 2020; van Rooij & Baggio, 2021). Stinson (2018,
p- 126) explained how “[c]onnectionists talk about taking con-
straints from both physiology and psychology, as though they are
employing an inferential pincer movement/[, but really this is just
words to little effect since] there are no halting conditions” in the
search for such bridges between levels (Guest & Martin, 2023;
Sejnowski et al., 1988). “In the cognitive sciences and the phi-
losophy of mind, [...] appropriate bridge laws will not be
forthcoming” (Arkoudas, 2008, p. 471).

This situation is noteworthy because if models get caught up in
computationalist confusions, they possess no protection against
issues like formal intractability (van Rooij, 2008; van Roojj et al.,
2024), limiting not only their usefulness as models, but ensuring
severe implications for their related theory if its evidential basis
depends on the model. It is also notable because such reductionist
maneuvers are intriguing in of themselves when studying how a
set of scholars reason metatheoretically, especially in relation to
what empirical evidence is privileged, and in quasidefiance of
Marr (1982). Taken together, what this means is that certain types
of evidence are seen as primal, like behavioral or neuroimaging
data sets, while others, such as mathematical truths about given
computational specifications are less important, even though
the latter directly affect the properties of ANNs and other models
(van Rooij et al., 2024).

Separation: What Differentiates Types of
Connectionism?

According to. ... Ali Rahimi and others, [ANNs] and deep learning
techniques are based on a collection of tricks, topped with a good dash
of optimism, rather than systematic analysis. Modern engineers ...
assemble their codes with the same wishful thinking and misunder-
standing that the ancient alchemists had when mixing their magic
potions. (Dijkgraaf, 2021, n.p.)

Connectionism can be seen as a dramatically divergent way of doing
science. In the earlier argumentation regarding €-connectionism, it
was explicitly stated that the goal was to show a proof of concept
(see rows goal and question, in Table 1). In other words, human
cognition was seen as driven by explicit rules or requiring rule-like
knowledge, and connectionism reacted to that by asking if certain
cognitive capacities could be captured through statistical learning
mechanisms. For example,

the rules of English pronunciation are complex and highly variable, and
have been difficult to model with traditional Artificial Intelligence
techniques. But neural networks can be taught to read out loud simply by
being exposed to very large amounts of data. (Sejnowski & Rosenberg,
1987; Elman et al. 1996, p. 5)

While this is not only true in more recent incarnations of €-con-
nectionism, older versions still, all the way back to McCulloch and
Pitts (1943) have highly divergent takes on framing cognition (also

see Abraham, 2002; Aizawa, 1992; Boden, 1991; Chirimuuta, 2021;
Gefter, 2015):

To psychology, however defined, specification of the net would
contribute all that could be achieved in that field even if the analysis
were pushed to ultimate psychic units or “psychons,” for a psychon can
be no less than the activity of a single neuron. Since that activity is
inherently propositional, all psychic events have an intentional, or
“semiotic,” character. The “all-or-none” law of these activities, and the
conformity of their relations to those of the logic of propositions, insure
that the relations of psychons are those of the two-valued logic of
propositions. Thus in psychology, introspective, behavioristic or
physiological, the fundamental relations are those of two-valued logic.
(McCulloch & Pitts 1943, p. 131)

In other words, “[McCulloch] had been inspired by the Principia, in
which Russell and Whitehead tried to show that all of mathematics
could be built from the ground up using basic, indisputable logic”
(Gefter, 2015, p. 96; also see Abraham, 2002, 2012; LePage-Richer,
2024). Ironically, of course, Principia Mathematica failed in its
stated goal “to solve the paradoxes which [...] have troubled
students of symbolic logic” (Whitehead & Russell, 1910, p. 1) as
shown by Godel’s incompleteness theorems (Godel, 1992, origi-
nally published in German in 1931). A further irony is uncovered
when one considers that 1980s and 1990s connectionism was
embroiled in fierce debates against symbolic style modeling and
perspectives on cognition (Aizawa, 1992; Boden, 1991).

Perhaps the real spirit of connectionisms of all types is the
divergence from methodological status quos with meagre or min-
imally weak theoretical commitments. For example, notice above
how in McCulloch and Pitts (1943) connectionism intervenes in
psychological theorizing to propose propositional logic-based
neurons as a universal substrate, for example, “most connectionist
researchers are really committed to ultimate neural plausibility,
which is more than you can say for most other approaches” (Elman
et al., 1996, pp. 49-50). These forms of reasoning over ANNs help
to set the stage for future deep learning.

Separating 9N-connectionism from the rest of the literature it is
embedded in involves again highlighting its nature as a method-
ology and not a theory, as discussed above where it is used as proof
of concept for a framework. However, 9i-connectionism also has
features present in mathematical psychology (cf. Navarro, 2021)
wherein models are fit to the data directly, and in this case extremely
large data sets. Often this is in lieu of frequentist statistical models
and through the use of similar techniques to achieve correlations
(such as representational disimilarity matrices; cf. Dujmovi¢ et al.,
2020; Guest & Martin, 2023; Pasquinelli, 2017). This stands in
contrast to a lot of other cognitive modeling techniques used in the
relevant fields connectionism typically touches on (see the -
connectionism column of Table 1). As such, 9)t-connectionism
embodies a methodology-as-theory approach, something that is
rarely so brazen even in the theory-light hypothesis-driven cognitive
sciences like mainstream experimental psychology (Flis & van Eck,
2018; Guest & Martin, 2021; van Rooij & Baggio, 2021).4

“ Notably, Flis and van Eck (2018) surveys all the last half of the previous
century and the word “theory” appears nowhere prominently in his analyses.
While Guest and Martin (2021) and van Rooij and Baggio (2021) discuss
what to do with with such a continuing lack of theory in a world of so-called
replication and other crises.
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A METATHEORY OF CLASSICAL AND MODERN CONNECTIONISM 7

In conclusion, €-connectionism allows and deploys a me-
tatheoretical calculus that contains:

If we believe ANNs can p: learn an input—output mapping.
Then, we create ANNS to check p.

On the other hand, 9t-connectionism allows and deploys:
If ANNs appear to perform tasks at a human level.
Then, ANNs have human capacities.

This second type of reasoning has been analyzed in depth in Guest
and Martin (2023), but we will return to both in the following
sections.

Discursive Survival

Only very recently has connectionism resurfaced in Al. And, according
to some, with revival has come reversal: Seemingly the tables have
turned. Many people today can be heard announcing that GOFAI [good
old-fashioned AI; symbolic approaches] is utterly discredited. [O]nly
connectionist theories can explain the mind—so, at least, we are told.
(Boden, 1991, p. 11)

We propose connectionism has a survival strategy honed by decades
of proverbial summers and winters; engineered high and low funding
periods (Boden, 2006; Dreyfus, 1965; Haigh, 2023; Lighthill,
1972; McCorduck, 2004; Olazaran, 1996). We will analyze such
historical narratives, but first we will examine how the metatheorical
calculus of IN-connectionism is—perhaps unexpectedly given its
problematic structure—robust and transmissible. Before that, we
explain the uptake and deployment of the more mainstream calculus
of C-connectionism.

Argumentation

Typical Science

[Clonnectionists have paid far too much attention to the successes of
connectionist modelling in Al and far too little attention to theoretical
issues concerning the nature of cognition. (McLaughlin & Warfield,
1994, p. 382)

In the case of €-connectionism, we see a typical scientific framing
for the modeling endeavor. In the most zoomed out case, they posit
M,,, which they believe to be the case, for example, “ANNs can learn
this input—output mapping,” where M is the model and p is the
mapping, task, or capacity being modeled; see Figure 2. In fact, this
is part of their identity (normatively) as connectionists, but they
also clearly state they believe it. €-connectionism commits to a
metatheoretical calculus that permits reasoning such that, if one
observes or infers a phenomenon or capacity in a neurocognitive
system, and one believes it can be modeled using connectionist
methodologies, then one constructs an ANN such that it does;
formally:

O(S,) A B(p'~p) A BM,) = C(M,), (1)
where S, is the system under study observed as performing p/,
which appears equivalent to, or is formalized or modeled as p our
target phenomenon or capacity. So, O(S,,) is the observation that p’

occurs in the system under study (see Figure 2). & (p'~p) is the
belief that constitutes the scientific mediation between model,
which has a relationship to (e.g., produces) p, and phenomenon
under study p’, provided by our practice and cognition as scientists.’
2B (M,) represents our belief in “ANNs can learn some input—output
mapping,” or in “ANNs can show behavior similar to that seen
in humans doing a task,” or in “ANNs can compute internal
representations that are theoretically useful.” So %(M,) is the
explicitly stated belief that p is modelable by M. C(M,,) is the
process of checking whether there exists an accessible possible
world that is truth making for M, (see Barcan Marcus, 1961, 1967,
1990, 1997).

Proposition 1 can be read as: If we observe p’ in a cognitive
system, and we believe the p’ can be related to a process, p, in our
model, and we believe our model can give rise to this process, then
we endeavor to create such a model. In all cases, p is not typically
general, but a specific example of conceptualizing a subset of human
cognition, such as a capacity, series of behavioral tasks, a disorder,
and so forth. The referent of p is much broader than only the set of
observations that can be written to datafiles; it can involve scientific
entities like cognitive capacities. In other words, € involves
checking if we can create an ANN model that indeed can capture the
given constraints, be they input—output mappings as above, or some
configuration of internal states, or both, etc. This is not controversial
or unusual science, wherein we go from a theoretical position that
we entertain for any number of reasons (including belief), to looking
for/at models that can capture our beliefs.

To repeat Proposition 1, if we observe a system S performing p’,
which can include capacities, (quasi)theoretical constructs, as well
as phenomena, ¢, such as those in those depicted in Figure 2, then
we believe we can build a model M that performs p, which is the
modeled variant or stand-in for p’. Based on this belief, we go off and
search for M,. This practice is taken to be robust, primarily because
it demonstrates that connectionism can indeed account for many
phenomena or capacities through this way of modeling. Purely
because of ANNs’ high expressive power, such models can
seemingly model everything—or at least every task or capacity that
C-connectionists engineer stimulus sets for. This had not been the
case previously with the XOR problem during the Perceptrons
Controversy (Olazaran, 1996). But since the advent of contempo-
rary big data combined with large models, which has improved
performance on some benchmarks—Iikely due to the neural scaling
law (Bahri et al., 2024), whose implication for the use of ANNS as
arbiters of theory is alas out of the scope of this article—it has been
too tempting to simply add more layers, just one more hidden pool
of units. Rather than contemplating how to better model causal
structures of phenomena or of cognitive capacities with particular
and specific specifications beyond additional layers or units, the
focus is on increasing the size of models and strengthening cor-
relations between models and empirical data (Guest et al., 2025).

So discursive survival here lies in the prima facie sensible nature
of believing something could be modeled with ANNs and then
demonstrating to the rest of the interested scientific world that it can

> We do not propose it is unique to G-connectionism, but a common
framing of how we work (Guest & Martin, 2021; Morgan & Morrison,
1999). What ~ captures here is this mediation; and if it is replaced with = we
could diagnose a transition to 9)-connectionism, or a confusion between
map, p, and territory, p".
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8 GUEST AND MARTIN

indeed be done. €-connectionism as a framework can model such a
vast swathe of cognitive and psychological findings that it appears to
be—not a failure any more, but—a coherent modeling paradigm
through which to test ideas and hypotheses. As mentioned, we will
return to this, as what might appear discursively to be the case need
not always indeed be the case.

Putting the Con in Connectionism

Despite there being academic reasoning for how Egyptians built the
pyramids — AKA the pulleys — people still believe aliens built or
at least instructed the building and go on to make YouTube videos
about the conspiracy, which then perpetuates the belief for a whole
new generation of skeptics and extraterrestrial enthusiasts. We’ll never
know the full story, so people fill in the gaps with the narrative
they believe the most—which, for lots of people, goes back to aliens.
(R. Thomas, 2021, n.p.)

As we will explicate herein, connectionism in its modern incarnation
can be seen as often applying conspiratorial or otherwise pseudo-
scientific thinking to scientific reasoning (Guest & Martin, 2023;
Spanton & Guest, 2022). This also harks back to the neurobiological
origins of ANNs. For example, LePage-Richer (2024) docu-
mented that

neural networks were first introduced as a neuroanatomical approach to
racial difference [as well as constituting part of] an experimental ethos
that systematically involved organizing, managing, and disciplining
human bodies while devaluing the practical, local, and contextual
knowledge they hold. (p. 21)

For 9, such cases have a slippage that we have also warned against
(Guest & Martin, 2023): a confusion between “the outward
appearance and the essence of things [such that it can be possible we
believe that the two have] directly coincided” (Marx, 1894, p. 592).
The warning when the way things behave, or seem to appear, is held
as a stand-in for how things work or are, is not only that “science
would be superfluous” (Marx, 1894, p. 592) in the general case, but
also that we risk severe fallacies minimally and crimes against
humanity maximally (Guest, 2024). In the former case, we can
confuse the sun appearing to rise with evidence for geocentrism,
because it certainly looks that way; and in the latter case we can
confuse, for example, superficial differences in skin tone for
humanity existing on a sliding scale (Andrews et al., 2024; LePage-
Richer, 2024; Saini, 2019).

In past work, we have boiled this reasoning down to: “If the
model correlates with human behavioral and/or neuroimaging data,
then the model does what humans do” (Guest & Martin, 2023,
p.- 216). Which is to say that when we, as a field, see models
behaving consistently with our experimental participants, we allow
conclusions regarding equivalence of the two systems (engineered
model and phenomenon under study) in terms of their mechanistic
proprieties or otherwise important core aspects. As we shall see
through some worked examples below, this perpetuates reasoning
that depends on a false analogy—just because two systems appear
similar, these conclusions are not warranted and are in fact harmful
in the ways described.

To analogize, the pyramids—whose construction techniques are
subject to research and lay discussion, not only because they are
beautiful feats of architecture and engineering but also because they

appear to be impossible without the use of modern tools—are subject
to similar conspiratorial thinking as are ANNs. Some go so far as to
state that because of their appearance, that it is indeed impossible for
them to have been built millennia ago by humans, attributing their
existence to extraterrestrial aliens. But even outside canonical con-
spiratorial thought we see that even the simple pyramid gives rise to
incredibly many proposed explanations and understandings—which is
to say that, at least if outside pancomputationalism (cf. Dodig-
Crnkovic, 2023), the Pyramids are not computing anything.

To take the worst case of (racist) conspiratorial thought, as found
in pseudoarcheology, we get (via modus ponens):

If the Pyramids appear to require modern techniques, then they were
built by aliens.

They appear to require modern techniques.
Therefore, they were built by aliens.

Bearing in mind, this does not change even if we allow for more
realistic scenarios: The point still stands that more superficially
sensible scenarios still implicate a huge swathe of potential options
to choose from, for example, with respect to ramp types attached
onto the Pyramids to aid in construction (multiple realizability;
Chirimuuta, 2018, 2021; Egan, 2017; Figdor, 2010; Guest & Martin,
2023; Guest et al., 2025; Hardcastle, 1995, 1996; Litch, 1997;
Polger & Shapiro, 2016; Ross, 2020):

If the Pyramids appear to require modern techniques, then they were
built using modern techniques.

Even in this less conspiratorial case, some argue that—even though
we have found evidence of quarrying on the stones themselves and
have good candidate quarries—human-made stones cast from
concrete-like substances are part of the Pyramids (see Folk &
Campbell, 1992, for these kinds of claims). To reiterate, we do not
even need to take a stand on the fact of the matter of construction
techniques of the Pyramids, we need only to scrutinize the
relationships between statements to understand the conclusion
does not follow (in Guest & Martin, 2023, we criticize the order of
each statement within the conditional). This is what makes the
search for extraterrestrial intelligence (e.g. SETI Institute, 1984)
typical science, while the above claims are pseudoarcheology. The
Ancient Egyptians may well have possessed the knowledge of
concrete, but we cannot safely conclude this (solely) from the way
things look. Applying this analysis to I-connectionism, we get,

if ANN behaviors appear to be cognition, then they have human
capacities.

And since it is the case that ANNs display quite readily human(-like)
behaviors, modus ponens can be applied as above. Placed into
doxastic logic, we can express the calculus this way:

O(S,) A B(p'=p) AOM,) = B(M,), )

where each symbol is as before; O(S,) is the observation that p’
occurs in the system under study, & (p'=p) expresses that IM-con-
nectionists believe that p’, the phenomenon or capacity people do is the
same as p, the behavior of the model; O(M),,) is the observation that
the ANN can perform p, recall Figure 2; and %(M),) is the belief that
M does do p’, which is what the neurocognitive system does. The
belief p'=p is (minimally tacitly, maximally opportunistically,
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and purposefully) a direct confusion between map and territory,
explanandum and explanans, model and phenomenon, and theory
and capacity.

In both cases, aliens visiting Earth, and matrix multiplications
being brains or cognition, our thinking jumps from seeing what
something appears to be, looks like, to what something is, and in so
doing selects a, or even the, most unlikely and complex solution. In
our case, going from a model correlating with neurocognitive data to
proposing that mechanistic or functional properties are somehow
importantly shared, can be seen to violate what we know about
computationalist principles, like multiple realizability (Chirimuuta,
2018, 2021; Egan, 2017; Figdor, 2010; Guest & Martin, 2021, 2023;
Guest et al., 2025; Hardcastle, 1995, 1996; Litch, 1997; Polger &
Shapiro, 2016; Ross, 2020; van Rooij et al., 2024). For example, the
multiple realizability of a given function by an infinite set of possible
codebases means that the inferences on the implementation level
between codebases about shared mechanisms is limited. On the
other hand, if one rejects that cognition can be multiply realized,
then what mechanistic or otherwise understanding do models
provide under such an assumption? If one accepts multiple reali-
zation is at play, which connectionists typically explicitly do, then
one must bite the bullet and negotiate the inferential and mathe-
matical complexities that come with it (Guest & Martin, 2025; Guest
et al., 2025). A mirror—not even an Al mirror—is not what it
reflects (Vallor, 2024). These jumps in logic can be found in many
jocular stories, for example, when a person first encounters a
television, would they assume the device contained small people?
Or would a person assume somebody was trapped inside a telephone
because it emits human voices? J-connectionist thought follows
along these lines when it formulates its metatheoretical calculus
to allow for these types of beliefs to follow from these types of
observations. This all stems from the fact that inputs, outputs, of
people and models and even the internals of a model are not a
specification and not a theory (Guest & Martin, 2021). Landing back
in Egypt for a moment, we see another parallel:

Everything that I have found convinces me more and more that indeed it
is this society that built the Sphinx and the pyramids. Everytime I go
back to Giza my respect increases for those people and that society, that
they could do it. You see, to me it’s even more fascinating that they did
this. ... Rather than just saying, you know copping out and saying,
there’s no way they could have done this. I think that denigrates the
people whose evidence we actually find. (Mark Lehner as quoted in
NOVA, 1997, n.p.)

Thus, in much the same way, confusing the ANN map for the
neurocognitive territory ends up underestimating the system under
study, derailing our science, and plays fast and loose with our
experimental participants’ humanities (Erscoi et al., 2023; Forbes &
Guest, 2025; LePage-Richer, 2024; van der Gun & Guest, 2024).
Nonetheless, it keeps surviving as a rhetorical strategy in our
scientific endeavors.

Narration
In a Deep World, We Need to Go Deeper Still
There are a lot of people out there who are deeply annoyed by the

outlandish claims being made in some quarters about the accomplish-
ments and power of connectionism. (Smolensky, 1988, p. 67)

While the authors think that ideologies consistent with 9t-connec-
tionism are rhetorically flawed and allow themselves to be easily
attacked (Guest & Martin, 2023), we propose that connectionism
generally, and especially €-connectionism, is occasionally robust in
the face of direct attacks, for example, the discussions involving
symbolic Al. Notwithstanding, it must not be forgotten that
connectionism has had long periods of being extremely scientif-
ically unfashionable, for example, the Perceptrons Controversy
(Olazaran, 1996).

On the robustness point, however, €-connectionism adapts to
critique. For example, connectionism started evaluating the so-
called internal representations in ANNs (rows theory and mech-
anism in Table 1) before M-connectionism appeared on the scene.
Criticisms such as, connectionist models are only theoretically
useful “if one can interpret the internal activity of the simulation
that the simulation increases our knowledge; that is it is only then
that the simulation is to be considered a scientific theory worthy of
consideration” (Green, 1999, p. 143) were obviously taken to heart
since connectionists took to investigating so-called internal re-
presentations, which means looking at the values of units in the
hidden layers, that is any units not involved in direct input and
output. Thus, incorporating looking at the hidden units became
standard methodological practice. “After a computer model has
been trained to generate a behavior which is of interest to us, we can
inspect its internal representations, vary subsequently the input to it,
alter the way it processes the input, and so forth” (Elman et al.,
1996, p. 45).

Another point of successful scientific presentation of €-con-
nectionism comprises acknowledging and understanding fit-to-data
is not enough (rows goal and question in Table 1). “Now all
cognitive connectionists will agree that simulation alone is not
explanation” (M. S. C. Thomas, 1998, n.p.). However, he followed
with, “Connectionist models must have constraints, and those con-
straints must be supported by empirical data” (n.p.) with no reference
to theory as a factor. Notwithstanding, €-connectionism presents a
coherent research program: “we want [...] to use the model to help
develop a theory about the internal processing which givesrise to [... ]
behavior, rather than just implementing a theory we already hold”
(Elman et al., 1996, p. 56). This is an appealing rhetorical frame in
which they present connectionist models as tools to refine scientific
thinking and theorizing, and in which they concede fitting the data is a
red herring. This presages JM-connectionism’s theoretical stance, or
lack thereof.

The story €-connectionists tell is that they keep surviving being
unfashionable because they are indeed onto something. And their
main way of surviving, post-XOR fiasco, was to argue strongly their
case. Aspects of learning problems like nonlinear separability
remain underexplored to this day, or minimally underdiscussed
(Baayen & Hendrix, 2017; Olazaran, 1996).

More so than previous incarnations, I-connectionism as a
movement in the neuro-, psychological, and cognitive sciences is
caused by and causes a scorching hot Al summer. As such, dis-
cursive survival is granted, we propose, since the media and public
and private funding provide, minimally financial, protection from
exposure to critique or improvement attempts (Kindig, 2024). Also,
because of this cover, statements about the 90t framework can be
made without the normal scientific standards of citation, for
example, such as that ANNs have reached human-level capabilities
(for more on analyzing this rhetoric, see Guest & Martin, 2023;
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10 GUEST AND MARTIN

Titus, 2024). Furthermore, the abilities of models are rarely ques-
tioned, or the questioning is ignored, for example, it is not well-
known that the MNIST data set is linearly separable (Just & Ghosal,
2019). This is important—at least rhetorically—because restricted
Boltzmann machines trained on MNIST were part of the Al spring
prior to this summer (Hinton et al., 2006). If they could have been
undercut in the past, rhetorically as before with the perceptrons
controversy, by investigating potential oversights in the training
data, such doors are now truly closed. The thermal runaway reaction
of the current Al summer was by 2010s in full force.

Thus, it could be said, that having learned from the perceptrons
controversy (Olazaran, 1996), that adding more layers to networks is
(or at least was until recently) seen as the mantra for fixing (m)any
problems (Dawson, 2013; Medler, 1998). By the same token,
apparently serious problems with (understanding) overfitting,
overparametrization, or the behavior of these models generally (e.g.,
Belkin et al., 2019; Gardner, 1988; Nichani et al., 2020; Richter
et al., 2021; Zhang et al., 2016, 2017) are seen as anything from
quaint to nonexistent in the communities that use these models for
brain, behavior, and cognition.

Getting Past Past-Tense

[ANNs] are not perfect: they are not really explainable, they are not
pliable, i.e., they cannot be easily modified to correct any errors
observed, and they are not efficient due to the overhead of decoding. In
contrast, rule-based methods are more transparent to subject matter
experts; they are amenable to having a human in the loop through
intervention, manipulation and incorporation of domain knowledge;
and further the resulting systems tend to be lightweight and fast.
(Chiticariu et al. 2023, p. iii)

In what is known in the literature as the past-tense debate (e.g.,
Elman et al., 1996; Pinker & Ullman, 2002), cognition and its
underpinning substrates were discussed in terms of whether hard-
wired capacities, such as grammatical rules for English past-tense
formation, are encoded in the genes or otherwise without learning.
Furthermore, claims were made about connectionist systems, such
as, ANN “models cannot deal with languages such as Hebrew,
where regular and irregular nouns are intermingled in the same
phonological neighborhoods” (Pinker & Ullman, 2002, p. 459).
While it may have been true for models at the time that certain data
sets were unlearnable, or specific nondeep ANNs had limited
learning abilities due to their architecture or training set or regimen,
this both does not hold in the present day for certain data sets
(discussed below) and continues to hold in the sense that there are
data sets that are inaccessible to modeling endeavors using ANNs
(see proof in van Rooij et al., 2024). Work such as Zhang et al.
(2016, 2017) can serve to neutralize the claim that ANNs might
struggle with certain unstructured data sets, for example, “where
regular and irregular nouns are intermingled” (Pinker & Ullman,
2002, p. 459), by demonstrating that ANNs can learn utterly random
mappings between inputs and outputs. Of course, such a finding
about ANNS is also problematic to €-connectionists, who propose
that in many cases similar input—output pairs are represented
similarly inside the model’s learned internal representations. And in
return, anticonnectionists will and do explain that therefore con-
nectionist models are overly powerful, “reducing connectionism to a

universal statistical approximation technique rather than a source of
empirical predictions” (Pinker & Ullman, 2002, p. 474). This is
perhaps prescient; compare this to the Goal row in Table 1. The
reality is complex because it is both the case that ANNs can learn an
infinite set of impressive input—output mappings—hence all the
hype—but it is not the case, and formally so, that they can learn any
such mapping (van Rooij et al., 2024). We unpack this below.

Rehashing the past-tense debate is not useful (for our purposes),
but learning from the mistakes and pitfalls of past rhetoric is useful
to the practitioners who wish to carry out connectionist modeling.
On the one hand, it may not come as a surprise to some that even
at the birth of 9-connectionism (circa 2010; Table 1) and to this
day, the past-tense “veritable brouhaha” (Kirov & Cotterell, 2018)
was and is discussed by practitioners (e.g. Corkery et al., 2019;
Kohli et al., 2020; X. Ma & Gao, 2022; Oh et al., 2011; Seidenberg
& Plaut, 2014; Westermann & Ruh, 2012).

On the other hand, ANNSs, on the cusp of 9i-connectionism, are
far from their days of being framed as flawed for being unable to
compute XOR. They are now seemingly impervious to critique and
in fact an old theoretical weakness is now coopted, reframed as a
strength—these models are now upgraded to universal function
approximators:

According to the universal function approximation theorem, any
sufficiently deep and sufficiently large network, given sufficient training
data, learns to approximate any (continuous) function from input to
output arbitrarily well. (Cybenko, 1989; Hornik, 1991)—Ma and Peters
(2020, p. 7)

Connectionism underwent a revival in the mid-1980s, primarily
triggered by the development of back propagation, a learning algorithm
that could be used in multilayer networks (Rumelhart et al., 1986).
This advance dramatically expanded the representational capacity
of connectionist models to the point where they were capable of
approximating any function to arbitrary precision, bolstering hopes
that paired with powerful learning rules any task could be learnable
(Hornik et al., 1989). This technical advance led to a flood of new
work as researchers sought to show that neural networks could
reproduce the gamut of psychological phenomena, from perception to
decision making to language processing. (McClelland et al., 1986;
Rumelhart et al., 1986)—Jones and Love (2011, p. 172)

Notably, these statements do not follow one way or another. If a
model is indeed a universal approximator for any function, why
would scientists need to “show that neural networks could reproduce
the gamut of psychological phenomena”? On the contrary, this is
given if they are indeed so powerful (hence the critique above by
Pinker & Ullman, 2002). To analyze this properly, as many mis-
communications abound with respect to this period (Olazaran, 1996;
Schmidhuber, 2015), what is proven by results such as Cybenko
(1989), Hornik (1991), and Hornik et al. (1989) are not that ANNs
can find a function approximation for any input—output mapping, but
that in principle a model that looks like an ANN, that is could be
built up of ANN components, can stand in for any function from a
given class of functions.

First, this has nothing to do with backpropagation, as the learning
algorithm is not implicated in the universal approximation proofs
cited (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989)—only
relevant is the idea of multiple hidden unit layers, which was known
at the time of the perceptrons controversy and proponents repeated
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the claim that multiple layers are the way forwards, asking for
funding to develop such networks (Boden, 2006; McCorduck, 2004;
Olazaran, 1996). And this property of ANNs was only proven to be
the case by Ismailov (2023), so decades later, and for ANNs with
two hidden unit layers for approximating continuous and discon-
tinuous functions. Also,

models with several successive nonlinear layers of neurons date
back at least to the 1960s ... and 1970s. [Additionally, a]n efficient
gradient descent method for teacher-based Supervised Learning
(SL) in discrete, differentiable networks of arbitrary depth called
backpropagation (BP) was developed in the 1960s and 1970s[.]
(Schmidhuber, 2015, p. 86)

So the retelling by connectionists (e.g. Kriegeskorte, 2015, and other
examples above) is not entirely faithful to what is found in the
literature, but does heavily figure in the narration patterns we describe
herein. For example, the addition of more layers being perceived as
pivotal even though such a property had preexisted ANNs falling
out of fashion (Schmidhuber, 2015).

Second and more importantly, these are not equivalent claims:
just because any arbitrary distribution can be (in principle) captured
by a mixture of Gaussian functions, does not mean this mixture
is easy to find in practice; just because for any given traveling
salesperson problem there exists an optimal solution, does not mean
we have this solution handy, that it is easy to find. Such confusions
are the same as confusing P for NP in theoretical computer science.
Perhaps the authors know this, but statements such as “connectionist
models [are] capable of approximating any function to arbitrary
precision” (Jones & Love, 2011, p. 170) allows for either inter-
pretation (as do others, e.g., Kriegeskorte & Douglas, 2018).
Importantly, ANN models are not “capable of approximating any
function,” if “capable of approximating” means they are able to find
an approximation using their learning algorithm for the inputs and
outputs given. Training ANNs with hidden units using back-
propagation is NP-hard: the solutions might be out there, but there is
no guarantee we can find them (§ima, 1996; also see Colbrook et al.,
2022; van Rooij et al., 2024). These kinds of, purposeful or oth-
erwise, confusions or unclarities with respect to what can be
computed with ANNs, have been present since their inception, for
example, “anything that can be completely and unambiguously put
into words, is ipso facto realizable by a suitable finite neural net-
work” (originally presented in 1948, Von Neumann, 1988, p. 310;
also see Boden, 1991; Skinner, 2012).

In the present landscape, J-connectionist stances might fall into
dramatically different traps to those in the past-tense debate, but they
also recapitulate some of the core tensions. In such contexts, not
only are historical facts muddied, distorted, or fabricated (Olazaran,
1996), but also strengths become weaknesses and vice versa. To
be set on more solid and consistent scientific footings, we must
remain vigilant and weary of such trends which appear to repeat
down the ages when it comes to connectionisms of all stripes. In
other words, the canonical weakness-turned-strength as expressed
by Pinker and Ullman (2002) and many others that ANNs are
extremely expressive causes problems to this day. And so it is
either (a) backpropagation is computationally implausible—why
parallel it to humans?—or (b) ANNs are so statistically expressive
as to be useless experimentally—why train and test them on data?
This aspect is the double-edged sword that connectionists, and

anticonnectionists, must carefully wield because there are formal
constraints on what connectionism can and cannot do and what we
can and cannot conclude (meta)theoretically.

Empirical Interface

[W]e now use the [brain] itself, as its own [model], and I assure you it
does nearly as well. (Carroll, 1893, p. 169)

The experimental typology shown in Figure 2 caricatures the two
possible ways connectionists carry out their modeling endeavors. In
other words, and in line with the (hyper)empiricism found in modern
incarnations of cognitive, neuro-, and psychological sciences,
connectionist empirical work is the primary way in which models
are defended as useful or valid scientific accounts of brain, behavior,
and cognition. The way in which both types of connectionism
interface with observation is perhaps uncontroversial, given this,
that is both require correlation between the models and the
human data. However, the difference between the two has
important repercussions for scientific inference within each of the
€- and IM-connectionisms.

On the left side of Figure 2 in blue is a simplified version of
how C-connectionism interfaces with observation. €-connec-
tionists observe phenomena, denoted by ¢;,¢; € @ which they
relate to neurocognitive systems, denoted by S (Equation 1).
Scientists within €-connectionism also postulate mechanisms
and/or functions for S—they do this based on their reading of the
literature, their own theoretical commitments about neurocog-
nitive capacities, and so on. Using their theoretical commitments,
they then build a connectionist model, M. That is to say, M
embodies an attempt to capture what is relevant about S in
compliance with €-connectionism, recall left column of Table 1.
When it comes to evaluating the scientific properties of M,
the methods are typical frequentist inferential statistics, as used
when analyzing the data for S, for example, to show differences
between or within groups, and so on, as well as qualitative
comparisons (e.g., Guest et al., 2020; Rogers et al., 2004; Tyler
et al., 2000).

In C-connectionism, importantly, patterns of data found in the
model are not taken to be scientifically relevant to understanding S
in and of themselves, denoted by explicitly stating ¢, & ®, where ®
is the set of phenomena of interest. What this means is that if a
pattern of results not found in people is found in the model, it is not
taken to mean anything. No claims of similarity are postulated
between S and M other than behavioral (or otherwise) data on
modeled tasks, on simulated experimental manipulations. If M is
seen to perform in ways in which no evidence exists either way for
human participants, more experiments can be run to check, but that
is not because €-connectionists believe they are identical as sys-
tems, but because the model can be seen as a way to generate novel
ideas for experiments or test the implications of our ideas (e.g.,
McClelland, 2009; Tyler et al., 2000). No ¢, that is anything that M
does, is seen as relevant to people other than as a model of simulated
behaviors or patterns of neurocognitive data. What this means is that
if the ANN displays behaviors not known to exist in, for example,
participants’ experimental data, no default assumptions about this
possibly errant behavior are made with respect to the cognitive
system. The model is not explored or tested on input—output
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mappings conceptualized as different to the tasks or capacities it was
designed for; such unexpected or underdefined behavior therefore
has no bearing on the model’s standing one way or another. The
model is just an implementation of a theory. It is not imbued with
any extra properties, such as being an instance of the phenomenon
under study or of a cognitive capacity.

In contrast, on the right side of Figure 2 in pink is a simplified
version of how IM-connectionism interfaces with observation.
While things may appear the same, there are some deep differences
between the two types of connectionism with respect to empirical
interfacing, the attempt at mediation between theory and data
(Equation 2). At the top of both panels, both types observe S —the
similarity ends here, as in 9t different principles are deployed to
relate S and M and ¢, to ©.

A typical I-connectionist will take some deep ANN off-the-
shelf, that is often not building it from scratch, but adapting, fine-
tuning (e.g., Demszky et al., 2023; Schrimpf et al., 2020, cf.
Liesenfeld et al., 2023; Pasquinelli, 2017) an existing ANN created
by machine learning researchers to be their M. This practice means
that the “computational mechanism” available to 9t-connectionism
is definitionally always the same, regardless of the question,
hypothesis, or conclusion, and as such, 9i-connectionism misses
out on the chance to pick out causal structures via modeling (Guest
et al., 2025). This is in contrast to €-connectionism, where typically
bespoke models are handcrafted, including the inputs and outputs
used to train and test the model. 9R-connectionist claims about the
relationship between S and M are based not on properties woven
into the model’s design, but correlations over data extracted from S
and M. Furthermore and recalling Proposition 2, S and M are both
seen as of the same kind, resulting in a map-territory merger (also
see: Guest & Martin, 2023). In Figure 2, this is expressed by ¢, € ®,
which is to say the behaviors expressed by, the phenomena seen in,
the ANN are seen as qualitatively equivalent to those found in
people, for all intents and purposes of equal standing.® When data
from ¢ correlates with data from ¢; and/or ¢;, the model is seen to
provide a theory for these neurocognitive phenomena and/or their
related capacities. This slippage between model, theory, and
phenomena is often seamless and argued for on the basis of
statements such as both the human system S and ANN system M
are so-called black boxes or otherwise hard to prima facie
understand (cf. Sullivan, 2022); recall the goal, question, and
mechanism rows in Table 1.

This all being said, we have described an idealized empirical
interface for IM-connectionism. Breaks in this mediation are not
uncommon in the literature when claims such as “we have artificial
models performing complex cognitive tasks at human performance
level” (Perconti & Plebe, 2020, p. 2) are presented with neither
critical thought on the success-to-truth inference (Guest & Martin,
2023; Titus, 2024) nor with literature references. Others have also
noticed this:

Hu et al. (2024) argued that “LLMs show strong and human-like
grammatical generalization capabilities.” Yet, as also noted in Leivada,
Giinther, and Dentella (2024), this claim is not backed up with human
data. (Leivada, Dentella, & Giinther 2024, p. 4)

Leivada, Dentella, and Giinther (2024) noted how such statements
break from the empirical grounding otherwise appealed to by such
connectionists (Guest & Martin, 2023, for other such instances).’
This appears worrisome for I-connectionism.

The Matrix Multiplication of Domination

[E]ven if a connectionist system manifests intelligent behavior, it
provides no understanding of the mind because its workings remain as
inscrutable as those of the mind itself. (Shepard, 1988, p. 52)

In the current climate—"connectionist Al is ‘drought-inducing
computing’” (McQuillan, 2023)— ANNs appear to be an unstop-
pable force with direct implications to both the daily lives of
cognitive and/or computational (neuro)scientists and people outside
these fields (e.g., Adams et al., 2023; Andrews et al., 2024; Bender
etal.,2021; Gebru & Torres, 2024; Li et al., 2023; McQuillan, 2022;
Ovalle et al., 2023; Urai & Kelly, 2023; van Rooij et al., 2024).%
These models, even if setting aside the harmful implications they
have outside science, pose serious questions about the quality of our
work and our (meta)theoretical reasoning within science. Herein, we
offer a serious reimagining along formal and historical lines of the
connectionist tendency within the cognitive sciences: a bifurcation
into, modern post-2010 9N -connectionism, and classical pre-2010,
C-connectionism. This analysis, our metatheoretical calculus
(embodied in Table 1, in modal and doxastic logic, and in Figure 2),
serves to investigate connectionist rhetorical framings, bringing to
light what and how cognitive science is done when ANNs are
implicated or connectionism is appealed to. Ultimately, our work
aims to foster critical thinking about how we do our science,
allowing us to question if such forms of scientific reasoning are
desirable to us, if connectionism as a framework should remain in
its current modern form.

To recapitulate our main points, we trace the current framings in
modern connectionism, to statements from classical connectionists
such as “We wish to replace the ‘computer metaphor’ as a model of
mind with the ‘brain metaphor’ as model of mind” (Rumelhart et al.,
1986, p. 75). As well as, “Don’t pre-wire structure into your
mechanism if it can get it for free from the environment” (Plunkett,
2001, p. 193). And the portentous: “connectionism [... ] might lead
to a different form of cognitive theory[, away from seeing] the
human mind as rule-governed [because] certain phenomena [... ]
can be neatly and economically dealt with by connectionist theories”
(M. S. C. Thomas, 1998, n.p.). During this transitionary period,
wherein so-called symbolic cognitive scientists urge themselves to
think deeply about what so-called rules might govern cognition, we
see that connectionists in contrast may have avoided stopping to
think “a different form of theory” (M. S. C. Thomas, 1998) might be
no theory at all.

The technoscientific embedding of ANNs, the ideological com-
mitments of connectionism, and the current and projected usage of such
frameworks and resulting theories or computational models deserve
critical engagement (as does all of cognitive science; Birhane & Guest,
2021; Carbajal et al., 2024; Prather et al., 2022). In this article, we have
analyzed these factors with an emphasis on the scientific reasoning that

® This is the case provided the data extracted from S and M correlate. For
more analysis on this also see section Inference Rules in (Mis)use in Guest
and Martin (2023), which explains what happens when the data from model
and phenomenon do not correlate.

7 Quote modified to cite papers previously referenced as “in press.”

8 Section heading is inspired by Collins (1990): “a matrix of domination
contains few pure victims or oppressors. Each individual derives varying
amounts of penalty and privilege from the multiple systems of oppression
which frame everyone’s lives” (p. 229).
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connectionism deploys in two proposed flavors, what we dubbed
classical (pre-2010) and modern (post-2010) connectionisms (recall
Table 1 and Figure 2), culminating in—a formal description of what we
take as the beliefs of practitioners, the adjudication over theories they
carry out—a metatheoretical calculus for each flavor.

Setting aside: the problem of induction and the underdetermination
of theory by data (true for all science, of course, but often un(der)
acknowledged here); the eschewing of multiple realizability within
computationalism (of which connectionism is a fellow traveler;
Chirimuuta, 2018, 2021; Egan, 2017; Figdor, 2010; Guest & Martin,
2021, 2023; Guest et al., 2025; Hardcastle, 1995, 1996; Litch, 1997;
Polger & Shapiro, 2016; Ross, 2020; van Rooij et al., 2024); the gross
ethics violations and the slippage into pseudoscience when the science
and technology sector are intertwined (from polluting the environment
to harming people through data breaches and pseudoscience or human
rights violations; Andrews et al., 2024; Bender et al., 2021; Birhane &
Guest, 2021; Dhaliwal et al., 2024; Forbes & Guest, 2025; Gebru &
Torres, 2024; Guest, 2024; Liesenfeld et al., 2023; Li et al., 2023;
McQuillan, 2023; Pasquinelli, 2017; Urai & Kelly, 2023)—so setting
aside this heavy baggage—how can connectionism obtain a justifiable
scientific purpose?® In other words, if we as a field allow ourselves to
be unduly charitable to connectionism, what do we risk? We have
argued that we risk both scientific rigor and theoretical substance. But
it need not be that way.

Is connectionism redeemable? For one, connectionism can
return to a € form, and limit itself to checking whether clear-cut
and transparent aspects of models facilitate functional and/or
mechanistic explanatory accounts of cognitive phenomena (e.g.,
Guest et al., 2020; Tyler et al., 2000). For example, by clearly
discussing externalist theoretical and modeling commitments—
that is do details encoded in the simulated stimuli, the model of the
environment, drive patterns of behavior seen in the simulation?—
and internalist theoretical and modeling commitments—that is do
different types of connectivity, or other internal model features,
account for these patterns? Connectionism can also explicitly
avoid the issues we outline as troubling for 9i-connectionism
from a scientific lens (Table 1; also see Guest & Martin, 2023), in
addition to those that are broader and have societal consequences.

Relatedly, and most importantly perhaps for the practitioners
themselves as individuals, we must cultivate an understanding that
models of this nature do not constitute theories as such nor do they
constitute the phenomena we study in cognitive science (Figure 2;
also see Guest, 2024; Guest & Martin, 2021, 2023, 2025; van Rooij
et al., 2024). The confusion between ANNs and the phenomenon,
that is the system under study, as well as the theory, that is the
scientific understanding we are attempting to obtain, is a dangerous
rhetorical circumstance. Computational models in cognitive science
serve as mediators between the world of theory—our verbal and
formal descriptions and explanations—and the empirical world—
experiments, phenomena, brains, and people (also see Guest, 2024;
Morgan & Morrison, 1999). Confusions between these three:
model, theory, and system under study, are thoroughly unscientific
and need to be addressed head on. If taken seriously, what has been
outlined above forces us to contend with problems within modern
connectionist thought. These three requirements set out the bare
minimum for a realigning of scientific goals, for modelers and
theoreticians within this framework, and specifically with our own
stated scientific values and practice.

Finally, connectionism, and cognitive science generally, can rid
ourselves of the hidden conflicts of interest inherent in taking
industry funding to build and use such models (Forbes & Guest,
2025; Gerdes, 2022; Liesenfeld & Dingemanse, 2024; Liesenfeld
et al., 2023). This is possible by requesting that we and our fellow
practitioners disclose such conflicts during and at the point
of publication. Relatedly, we need to acknowledge that such
relationships to industry effectively bend our metatheoretical
positions towards un-, or minimally a-, scientific reasoning that we
are under obligation to keep in check if not at bay (also see Andrews
et al., 2024; Bender et al., 2021; Birhane & Guest, 2021; Forbes &
Guest, 2025; Gerdes, 2022; Guest, 2024; Spanton & Guest, 2022).
Ultimately, it is up to us, theoreticians and modelers alike, to decide
on the fate of our own fields and on the basis on which we create,
understand, and reason about and over our models. Connectionism
can be perhaps be redeemed, but it requires us to: sacrifice
superficial understanding of what role models play and what they
constitute; halt the “anything goes” antiscientific dictum of industry
funding; and become aware of what follows from our reasoning
when we engage mechanistic and/or functional explanations; and if
done carelessly, we risk being incoherent or self-undermining.
Snatching defeat from the jaws of victory seems to be connec-
tionists’ speciality, however the only difference may be that, this
time round the stakes are higher both for science specifically and
society at large.

¢ We do not mean to say to set aside these issues which relate to con-
nectionism for all intents and purposes, but to assume they can be addressed
by, for example, cautioning against less ideal forms of scientific reasoning
(Guest & Martin, 2023, 2025; Guest et al., 2025), using smaller models
(Dingemanse & Liesenfeld, 2022; Jain et al., 2024), and other relevant
adjustments.
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